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помехоустойчивого метода видеостеганографии на основе 

глубоких нейронных сетей 
 

Аннотация: В работе предложен метод скрытой передачи 
данных в видео, обеспечивающий высокое визуальное 
качество и надежное извлечение сообщения после типовых 
искажений. Архитектура основывается на совместном 
обучении энкодера и декодера; для повышения 
устойчивости применяется дифференцируемый блок 
искажений, имитирующий шум, размытие, изменение 
яркости и масштабирование. Подход позволяет встраивать 
до 256 бит информации в кадр при среднем PSNR около 31 
дБ и BER < 1%. Эксперименты подтверждают скрытность и 
робастность метода относительно современных аналогов. 
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Введение 
Стеганография в видеоданных решает задачу скрытой передачи 

информацию. Например, для канала передачи информации «камера–
экран» характерны межкадровые зависимости и неизбежные 
искажения (масштабирование, шум, муар), что усложняет задачу и 
требует баланса между незаметностью, устойчивостью и 
вместимостью [1-3]. Традиционные методы (LSB, модификации 
DCT/DWT) обеспечивают приемлемое качество только при малой 
нагрузке и резко теряют надежность при реальных искажениях. 

Нейросетевые подходы сокращают этот разрыв: машинное 
обучение позволяет автоматически подбирать устойчивые способы 
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кодирования. Для изображений показали эффективность 
автоэнкодерные архитектуры и дифференцируемые имитаторы 
шумов (HiDDeN) [2]. Для видео предложены решения с вниманием 
и GAN-сопровождением (RivaGAN) [3] и мультиуровневые схемы 
(DVMark) [4], нацеленные на повышение устойчивости при 
сохранении визуального качества. 

 
Обзор связанных работ 
HiDDeN демонстрирует базовый принцип: энкодер, noise-layer и 

декодер обучаются совместно, оптимизируя одновременно 
скрытность и точность извлечения [2]. RivaGAN использует 
механизм внимания и состязательное обучение для повышения 
устойчивости к сжатию видео [3]. DVMark распределяет полезную 
нагрузку по пространственно-временным масштабам, повышая 
переносимость к совокупности искажений [4]. 

 
Архитектура модели 
Система состоит из энкодера  и декодера . На вход подаются 

кадр-контейнер  и сообщение  фиксированной длины L. Энкодер 
формирует стего-кадр , визуально близкий к . Декодер 
по искаженному стего-кадру  восстанавливает . В 
энкодере последовательно используются 2D-свертки (извлечение 
пространственных признаков) и тонкая 3D-свертка 3×1×1 для 
согласования соседних кадров (скользящее окно из трех кадров), что 
уменьшает межкадровое мерцание. 

Сообщение кодируется полносвязным блоком в карту признаков 
 и конкатенируется с признаками изображения. 

Финальная 2D-свертка восстанавливает стего-кадр исходного 
размера . Декодер – несколько Conv2D-блоков и 
полносвязный слой на  выходов, которые интерпретируются как 
вероятности битов (после пороговой обработки). 
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Рисунок 1 – Архитектура предлагаемой модели 

 
Дифференцируемый блок искажений 
Модуль , расположенный между  и , имитирует 

искажения стего-кадра на этапе обучения. Случайная композиция 
операций добавляется к каждому мини-батчу: аддитивный гауссов 
шум, размытие, изменение яркости и контрастности, 
масштабирование с последующей интерполяцией до исходного 
размера, а также небольшие аффинно‑перспективные 
преобразования. Операции выбраны дифференцируемыми, что 
позволяет  обучаться устойчивому внедрению. 

Функция потерь: 
, 

где  – MSE между  и  (скрытность); 
 – бинарная кроссэнтропия на битах; 
 – штраф за межкадровое мерцание; 
 – перцептивное взвешивание ошибок;  

, ,  подбирались эмпирически. 
 

 
Рисунок 2 – Пример работы дифференцируемого блока 

искажений 
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Экспериментальная методика 
В качестве данных использовались видеоклипы из набора UCF-

101; обучение проводилось в среде PyTorch с оптимизатором Adam 
(α = ) в течение 50 эпох при размере батча 16. На каждом шаге 
формировалось новое бинарное сообщение длиной L = 256 бит, 
которое внедрялось в кадры разрешения 256×256; одновременно к 
полученным стего-кадрам применялась случайная композиция 
аугментаций из заранее заданного набора. Качество скрытого 
встраивания оценивалось метриками PSNR и SSIM между  и  
(незаметность), тогда как надежность канала характеризовалась 
битовой ошибкой BER по всем позициям сообщения и долей 
экземпляров, восстановленных без каких-либо ошибок. 

 
Сравнение с аналогами 
По вместимости предлагаемый метод (256 бит/кадр) 

существенно превосходит HiDDeN и RivaGAN, а также опережает 
DVMark (≥100 бит/кадр), сохраняя высокую устойчивость. По 
качеству изображения ( дБ) он уступает RivaGAN и 
DVMark ( дБ), что отражает осознанный компромисс в 
пользу большей нагрузки при приемлемой незаметности. По 
устойчивости разработанный подход сопоставим с DVMark и 
превосходит HiDDeN; при этом у RivaGAN «высокая» устойчивость 
в первую очередь относится к воздействию сжатия. 

 
Таблица 1 – Сравнение методов видеостеганографии 

Метод Вместимость PSNR, дБ Устойчивость 
HiDDeN 30–40 

бит/кадр 
≈36 Средняя 

RivaGAN ~30 бит/кадр ≈35 Высокая (к 
сжатию) 

DVMark ≥100 бит/кадр ≈37 Очень 
высокая 

Предлагаемый 
метод 

256 бит/кадр ≈31 Очень 
высокая 
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Результаты 
Без искажений декодер извлекает сообщение без ошибок (BER = 

0 %), при этом средние по видео значения составляют 
 и . 

При воздействии типовых искажений – аддитивный гауссовский 
шум ( ), небольшие повороты ( ) и эмуляция съемки 
экрана (муар) – метод сохраняет робастность: средний BER не 
превышает , а при более мягких условиях ошибок не 
фиксируется; суммарно метрики остаются в допустимых пределах 

, , . 
На качественных примерах различия между I и I′ визуально 

минимальны; после искажений заметны артефакты кадра, но декодер 
извлекает сообщение корректно. Баланс между скрытностью и 
устойчивостью подтвержден на разнообразных сценах. 

 
Заключение 
Предложен нейросетевой метод видеостеганографии, 

обеспечивающий скрытность и надежное извлечение сообщения 
после типовых искажений. На «чистых» кадрах достигается BER = 0 
% при PSNR ≈ 32 дБ и SSIM ≈ 0,92; при умеренных помехах 
сохраняются пороговые значения PSNR ≥ 30 дБ, SSIM ≥ 0,85, BER ≤ 
1 % (нагрузка 256 бит/кадр). Метод применим для защиты контента 
и скрытой связи в видеопотоках. 
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Использование регулярных выражений для управления 

информационной безопасностью интеллектуальных 
транспортных систем 

 
Аннотация: Статья посвящена проблеме неполноты 
информации об инцидентах информационной безопасности 
интеллектуальных транспортных систем. Рассмотрены 
методы обработки и анализа данных из открытых 
источников, содержащих фрагментарную информацию о 
возможных угрозах функционирования 


